PlanetStar Wiki


189pages on
this wiki
Add New Page
Comments0 Share
Pasturium (165Ps)
Pronunciation /'pas•tər•ē•(y)üm/
Name in Saurian Fujkihaim (Fj)
Systematic name Unhexpentium (Uhp)
Location on the periodic table
Period 9
Coordinate 9s1
Above element Newtonium (119Nw)
Below element ––
Previous element Gibbium (164Gb)
Next element Hubbium (166Hb)
Family Hydrogen family
(Alkali metals)
Series Pasturide series
Atomic properties
Atomic mass 485.0292 u, 805.4099 yg
Atomic radius 196 pm, 1.96 Å
Van der Waals radius 271 pm, 2.71 Å
Subatomic particles 646
Nuclear properties
Nucleons 481 (165 p+, 316 n0)
Nuclear ratio 1.92
Nuclear radius 9.36 fm
Half-life 880.38 μs
Electronic properties
Electron notation 165-9-25
Electron configuration [Gb] 9s1
2, 8, 18, 32, 50, 32, 18, 4, 1
Oxidation states +1, +3
(strongly basic oxide)
Electronegativity 0.97
First ionization energy 518.4 kJ/mol, 5.373 eV
Electron affinity 73.2 kJ/mol, 0.759 eV
Covalent radius 196 pm, 1.96 Å
Physical properties
Bulk properties
Molar mass 485.029 g/mol
Molar volume 65.712 cm3/mol
Density 7.381 g/cm3
Atomic number density 1.24 × 1021 g−1
9.16 × 1021 cm−3
Average atomic separation 478 pm, 4.78 Å
Speed of sound 1151 m/s
Magnetic ordering Diamagnetic
Crystal structure Body centered cubic
Color Grayish white
Phase Solid
Melting point 366.16 K, 659.10°R
93.01°C, 199.43°F
Boiling point 1032.58 K, 1858.65°R, 759.43°C, 1398.98°F
Liquid range 626.42 K, 1127.55°R
Liquid ratio 2.82
Triple point 366.16 K, 659.09°R
93.01°C, 199.42°F
@ 7.6853 mPa, 5.7645 × 10−5 torr
Critical point 3248.42 K, 5847.15°R
2975.27°C, 5387.48°F
@ 69.2452 MPa, 683.399 atm
Heat of fusion 5.393 kJ/mol
Heat of vaporization 83.929 kJ/mol
Heat capacity 0.06156 J/(g•K), 0.11080 J/(g•°R)
29.856 J/(mol•K), 53.742 k/(mol•°R)
Universe (by mass) Relative: 6.37 × 10−44
Absolute: 2.13 × 109 kg

Pasturium is the fabricated name of a hypothetical element with the symbol Ps and atomic number 165. Pasturium was named in honor of Louis Pasteur (1822–1895), pioneer of microbiology who developed germ theory. This element is known in the scientific literature as unhexpentium (Uhp), dvi-francium, or simply element 165. Pasturium is notable for being the first period 9 element as the heaviest alkali metal, correspondingly located in the periodic table coordinate 9s1.

Properties Edit

Physical Edit

Pasturium is the densest alkali metal due to the very high atomic mass of the element. The element's density of 7.4 g/cm3 is lot denser than the lighter homologue newtonium, whose value is just 2.8 g/cm3. Like all other alkali metals, pasturium is silvery, but for this region of the periodic table in terms of atomic numbers, it is unusual as metals surrounding this element are colored due to extreme quantum effects. Also like lighter cogeners, pasturium is soft enough to be cut with a knife.

Pasturium's melting point is expected to be just low enough to be a liquid at room temperature based on the periodic trend, but it is not the case. With the absence of completed 8p orbital due to relativistic effects, the attractive forces between atoms would be stronger and would thus have higher melting point. Its melting point of 93°C (199°F) is similar to the melting point of sodium (98°C, 208°F). Its boiling point is 759°C (1399°F), about the same as potassium (758°C, 1397°F).

Atomic Edit

Pasturium's nucleus is comprised of 165 protons and 316 neutrons, which corresponds that its nuclear ratio is 1.92. It also has 165 electrons in 9 energy levels and 25 orbitals. Due to extreme relativistic effectss causing smearing of the orbitals, after just completed the d-orbital, the electron is filling in the s-orbital in the ninth and outermost shell as if skipping the p-orbital entirely. However, there are two electrons in the p-orbital that was last added 38 elements ago. The electrons are full in the p1/2 split orbital and none in the p3/2 split orbital.

Isotopes Edit

Like every other element heavier than lead, pasturium has no stable isotopes. The most stable isotope is 481Ps with a brief half-life of 880 microseconds. It undergoes spontaneous fission, splitting into three lighter nuclei plus neutrons like in the example.

Ps → 195
Ir + 123
Sb + 85
Rb + 78 1

Pasturium has several meta states, such as 480m1Ps, which is the longest-lived excited state at 98 milliseconds.

Chemical Edit

Pasturium is a reactive metal, like all other alkali metals, because it needs to lose the only electron in its outermost orbital. In response, its oxidation state is +1 (monovalent), but due to electrons in the 8p1/2 orbital participate in bonding due to small spacing between the 8p1/2 and 9s orbitals, +3 state (trivalent) is also common. Pasturium(I) would behave like potassium or silver; pasturium(III) would behave like thallium. Its electronegativity is 0.97 and the first ionization energy is 5.37 eV, similar in values to sodium, meaning pasturium is just as chemically active as sodium. Pasturium(I) forms solution more easily than pasturium(III). Pasturium hydroxide (PsOH) forms when the metal reacts with water, and neutral salts of pasturium would form when the metal reacts with acids, like pasturium nitrate (PsNO3) obtained when pasturium reacts with nitric acid.

Compounds Edit

Pasturium can form numerous compounds. Pasturium(I) hydroxide (PsOH) is a highly basic substance formed when pasturium reacts vigorously with water. Pasturium(I) nitrate (PsNO3) is an example of a salt when pasturium neutralizes nitric acid. Pasturium(I) oxide (Ps2O) is a red powder, formed when the metal exposes to the air for even a short time. Another oxide is pasturium(III) oxide (Ps2O3), which is a white powder. Pasturium(I) chloride (PsCl) is a pale orange ionic salt formed when metal is heated and electrified with table salt (sodium chloride). PsCl can be reacted with chlorine gas to give PsCl3, also a pale orange ionic salt like the former. Pasturium(I) iodide (PsI) is a pale pink rhombohedric crystals. This metal can slowly react with pure nitrogen to form pasturium(I) nitride (Ps3N), a green powder, or pasturium(III) nitride (PsN), a greenish white powder. It also reacts vigorously with phosphorus to form pasturium(III) phosphide, which is a lime green powder.

Occurrence and synthesis Edit

It is almost certain that pasturium doesn't exist on Earth at all, but it is believe to exist somewhere in the universe, at least barely. Since every element heavier than lithium were produced by stars, then pasturium must be produced in stars, and then thrown out into space by exploding stars. But it is theoretically impossible for even the most powerful supernovae or most violent neutron star collisions to produce this element through r-process because there's not enough energy available or not enough neutrons, respectively, to produce this hyperheavy element. Instead, this element virtually can only be made by advanced technological civilizations. An estimated abundance of pasturium in the universe by mass is 6.37 × 10−39, which amounts to 2.13 × 109 kilograms or ⅓ the mass of Great Pyramid of Giza worth of this element.

To go along with other such civilizations, humans on Earth may eventually have the capability to synthesize pasturium. To synthesize most stable isotopes of hubbium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be extremely difficult since it requires a vast amount of energy and even if nuclei of this element were produced would immediately decay due to its brief half-life. Here's couple of example equations in the production of the most stable isotope, 481Ps.

Cf + 165
Ho + 65 1
n → 481
J + 114
Cd + 48 1
n → 481

Applications Edit

Due to similarity to sodium in properties, pasturium uses would be similar to sodium, like in vapor lamps which give off bluish white light, in contrast to yellow light for sodium, laser guides in telescopes, and alloys. However, pasturium's useful applications would be impossible due to its extreme instability.

Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Bc Fl Lz Lv J Mc
8 Nw Gl * Du Bu Ab Sh Hi Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb
9 Ps Hb Kf Bn Ju Hm Bs Rs
* Ls Dm Ms Ts Dt Mw Pk By Bz Fk Dw To Pl Ah My Cv Fy Ch An Ed

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.