Wikia

PlanetStar Wiki

Feynmanium

Comments0
171pages on
this wiki
Feynmanium (137Fy)
Nomenclature
Pronunciation /'fīn•mān•ē•(y)üm/
Name in Saurian Voødmudaim (Vø)
/'vōüd•mu•dām/
Systematic name Untriseptium (Uts)
/'ün•trī•sep•tē•(y)üm/
Location on the periodic table
Period 8
Coordinate 5g17
Above element ––
Below element ––
Previous element Cavendishium (136Cv)
Next element Chadwickium (138Ch)
Family Feynmanium family
Series Lavoiside series
Atomic properties
Atomic mass 377.1256 u, 626.2318 yg
Atomic radius 149 pm, 1.49 Å
Van der Waals radius 170 pm, 1.70 Å
Subatomic particles 511
Nuclear properties
Nucleons 374 (137 p+, 237 n0)
Nuclear ratio 1.73
Nuclear radius 8.61 fm
Half-life 22.788 s
Electronic properties
Electron notation 137-8-24
Electron configuration [Mc] 5g11 6f3 7d1 8s2 8p2
2, 8, 18, 32, 43, 21, 9, 4
Oxidation states +5
(mildly basic oxide)
Electronegativity 1.44
First ionization energy 624.9 kJ/mol, 6.476 eV
Electron affinity 54.2 kJ/mol, 0.562 eV
Covalent radius 172 pm, 1.72 Å
Physical properties
Bulk properties
Molar mass 377.126 g/mol
Molar volume 57.478 cm3/mol
Density 6.561 g/cm3
Atomic number density 1.05 × 1022 cm−3
Average atomic separation 457 pm, 4.57 Å
Speed of sound 3388 m/s
Magnetic ordering Paramagnetic
Crystal structure Simple hexagonal
Color Gray
Phase Solid
Thermodynamics
Melting point 589.26 K, 316.11°C
601.00°F, 1060.67°R
Boiling point 1608.36 K, 1335.21°C
2435.38°F, 2895.05°R
Liquid range 1019.10 K/°C, 1834.38°F/°R
Liquid ratio 2.73
Triple point 589.11 K, 315.96°C
600.73°F, 1060.40°R
@ 32.479 μPa, 2.4361 × 10−7 torr
Critical point 3286.59 K, 3013.44°C
5456.19°F, 5915.86°R
@ 44.0152 MPa, 434.398 atm
Heat of fusion 6.305 kJ/mol
Heat of vaporization 158.766 kJ/mol
Heat capacity 0.05560 J/g/K, 0.10008 J/g/°R
20.969 J/mol/K, 37.744 J/mol/°R
Abundance
Universe (by mass) Relative: 6.03 × 10−33
Absolute: 2.02 × 1020 kg

Feynmanium is the fabricated name of a theoretical element with the symbol Fy and atomic number 137. Feynmanium was named in honor of Richard Feynman (1918–1988), who worked in the path integral formulation of quantum mechanics, quantum electrodynamics, superfluidity of liquid helium, and particle physics. This element is known in scientific literature as untriseptium (Uts), or simply element 137. Feynmanium is the seventeenth element of the lavoiside series and located in periodic table coordinate 5g17.

Relativistic problems Edit

Feynman, whom this element was named, noted that a simplistic interpretation of the relativistic Dirac equation runs into problems with electron orbitals at Z > 1/α = 137, suggesting that neutral atoms cannot exist beyond feynmanium, and that a periodic table of elements based on electron orbitals therefore breaks down at this point. However, a more rigorous analysis calculates the limit to be Z ≈ 173.

Properties Edit

Physical Edit

Feynmanium is a gray metal with a density of 6.6 g/cm3 and its speed of sound is 3388 m/s. In one cubic centimeter of metal, there are 1 × 1022 (10 sextillion) atoms, roughly the number of stars in the observable universe. If feynmamium has the average volume of an adult human, atoms number at 1.1 × 1027 (1.1 octillion). It forms hexagonal crystals that transforms to face-centered cubic when cooled to −183°F.

Feynmanium has a melting point of 601°F and boiling point 2435°F. Below its melting point, feynmanium exists as a solid state, at between melting and boiling points, it exists as a liquid state, and above its boiling point, it exists as a gaseous state. The triple point, condition where all three states of feynmanium coexist in equilibrium, is 600.73°F and 32.5 μPa; the critical point, minimum temperature and pressure where supercritical fluid of feynmanium is stable, is 5456°F and 44 MPa.

Atomic Edit

Feynmanium's electron configuration is assumed to be [Ms] 5g17 8s2, but due to smearing of the orbitals due to the small separation between the orbitals, the electron configuration is [Ms] 5g11 6f3 7d1 8s2 8p2. Electrons orbit the nucleus in eight energy levels. Nucleus conprises of 137 protons and 237 neutrons, corresponding to its nuclear ratio of 1.73. The atom masses 377.1 u and sizes at 1.73 angstroms.

Isotopes Edit

Like every other elements heavier than lead, feynmanium has no stable isotopes. The most stable isotope is 374Fy with a half-life of only 23 seconds. It undergoes spontaneous fission, splitting into two lighter nuclei as well as neutrons like the following example.

374
137
Fy → 208
82
Pb + 133
55
Cs + 33 1
0
n

There are four other isotopes having half-lives of at least one second, all undergoing fission. Feynmanium has several meta states, the most stable is 378m1Fy (half-life: 2.8 minutes (167 seconds)).

Chemical Edit

Feynmanium's only stable oxidation state is +5, because there are full 8s and 8p1/2 orbitals, plus one in the 7d. Its electronegativity on the Pauling scale is 1.44, meaning it is reactive, but not very. It can form hybrids, meaning it changes orbitals when bonded to other element.

In the elemental form, feynmanium slowly tarnishes in the air, reacts slowly in cold water but vigorously in hot water to form a hydroxide. Feynmanium forms basic oxide, meaning it neutralizes acids to form salt by liberating hydrogen gas. It only stable oxidation state is +5, and Fy5+ forms yellow aqueous solutions.

Compounds Edit

Feynmanium slowly darkens in the air to form feynmanium(V) oxide (Fy2O5), which is black and brittle. Another chalcide is Fy2S3, which is black crystalline solid. It can form halides of course, such as FyF5, FyCl5, FyBr5, and FyI5, fluoride and chloride are white ionic crystals while bromide and iodide are pale purple powdery crystals.

Feynmanium can form aqueous solutions, such as colorless feynmanium nitrate (Fy(NO3)5), and is a white salt when not in solution.

This metal can form organofeynmanium, such as Fy(C5H5)5 (cyclopentadienylfeynmanium) and (C5H11)5Fy (pentylfeynmanium).

Occurrence and synthesis Edit

It is certain that feynmanium is virtually nonexistent on Earth, and is extremely rare in the universe. Since every element heavier than lithium were produced by stars, then feynmanium must be produced in stars, and then thrown out into space by exploding stars. But it is virtually impossible for even the most powerful supernovae or most violent neutron star collisions to produce this element through r-process because there's not enough energy available or not enough neutrons, respectively, to produce this heavy element. Instead, this element can only practically be made by advanced technological civilizations. An estimated abundance of feynmanium in the universe by mass is 6.03 × 10−33, which amounts to 2.02 × 1020 kilograms or about 15 Pluto masses worth of this element.

To go along with other such civilizations, humans on Earth may eventually have the capability to synthesize feynmanium. To synthesize most stable isotopes of feynmanium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be extremely difficult since it requires vast amounts of energy. Here's couple of example equations in the production of the most stable isotope 374Fy.

209
83
Bi + 132
54
Xe + 33 1
0
n → 374
137
Fy
257
100
Fm + 85
37
Rb + 32 1
0
n → 374
137
Fy
Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Bc Fl Lz Lv J Mc
8 Nw Gl * Du Bu Ab Sh Hi Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb
9 Ps Hb Kf Bn Ju Hm Bs Rs
* Ls Dm Ms Ts Dt Mw Pk By Bz Fk Dw To Pl Ah My Cv Fy Ch An Ed

Around Wikia's network

Random Wiki