Wikia

PlanetStar Wiki

Daltonium

Comments0
171pages on
this wiki
Daltonium (125Dt)
Nomenclature
Pronunciation /'dul•tōn•ē•(y)üm/
Name in Saurian Tuckedaim (Tk)
/'tu•kē•dām/
Systematic name Unbipentium (Ubp)
/'ün•bī•pen•tē•(y)üm/
Location on the periodic table
Period 8
Coordinate 5g5
Above element ––
Below element ––
Previous element Teslium (124Ts)
Next element Maxwellium (126Mw)
Family Daltonium family
Series Lavoiside series
Atomic properties
Atomic mass 334.7718 u, 555.9016 yg
Atomic radius 171 pm, 1.71 Å
Van der Waals radius 202 pm, 2.02 Å
Subatomic particles 457
Nuclear properties
Nucleons 332 (125 p+, 207 n0)
Nuclear ratio 1.66
Nuclear radius 8.28 fm
Half-life 24.968 My
Electronic properties
Electron notation 125-8-23
Electron configuration [Mc] 5g1 6f3 8s2 8p1
2, 8, 18, 32, 33, 21, 8, 3
Oxidation states +3, +4, +5, +7
(strongly basic oxide)
Electronegativity 1.15
First ionization energy 479.4 kJ/mol, 4.969 eV
Electron affinity 41.1 kJ/mol, 0.426 eV
Covalent radius 183 pm, 1.83 Å
Physical properties
Bulk properties
Molar mass 334.772 g/mol
Molar volume 18.794 cm3/mol
Density 17.813 g/cm3
Atomic number density 3.20 × 1022 cm−3
Average atomic separation 315 pm, 3.15 Å
Speed of sound 611 m/s
Magnetic ordering Paramagnetic
Crystal structure Simple hexagonal
Color Bluish gray
Phase Solid
Thermodynamics
Melting point 1025.97 K, 752.82°C
1387.08°F, 1846.75°R
Boiling point 2244.17 K, 1971.02°C
3579.83°F, 4039.50°R
Liquid range 1218.20 K/°C, 2192.75°F/°R
Liquid ratio 2.19
Triple point 1025.87 K, 752.72°C
1386.90°F, 1846.57°R
@ 30.626 mPa, 2.2972 × 10−4 torr
Critical point 4162.19 K, 3889.04°C
7032.28°F, 7491.95°R
@ 34.7145 MPa, 342.606 atm
Heat of fusion 13.850 kJ/mol
Heat of vaporization 219.109 kJ/mol
Heat capacity 0.07938 J/g/K, 0.14289 J/g/°R
26.575 J/mol/K, 47.836 J/mol/°R
Abundance
Universe (by mass) Relative: 1.77 × 10−20
Absolute: 5.92 × 1032 kg

Daltonium is the fabricated name of an undiscovered element with the symbol Dt and atomic number 125. Daltonium was named in honor of John Dalton (1766–1844), who developed atomic theory, law of multiple proportions, and Dalton's law of partial pressures. This element is known in scientific literature as unbipentium (Ubp), or simply element 125. Daltonium is the fifth element of the lavoiside series and located in periodic table coordinate 5g5.

Properties Edit

Physical Edit

Daltonium is a bluish gray metal similar in appearance to lead. The density is 17.8 g/cm3, calculated by dividing its molar mass (334.8 g/mol) by its molar volume (18.8 cm3/mol). Daltonium forms hexagonal crystal structure with the average atomic separation of 3.15 Å and sound travels through it at 611 m/s, 78% faster than sound travelling through air.

It liquifies at 753°C, taking in 13.85 kJ of energy during the process and temperature do not rise while in the process of liquification. After process is completed, it stays liquid until its vapor pressure equals the ambient pressure, called its boiling point. At that point, the liquid converts into gas. If we raise the ambient pressure, its boiling point will go up, and its boiling point will go down with decrease in ambient pressure. If we decrease the ambient pressure enough, the boiling point would equal the melting point, called the triple point at a pressure of 30.6 mPa. If we decrease even more, then the temperature ceiling for solid daltonium would decrease because just like liquid, solid has vapor pressure and has volatility. In other words, below its triple point, it would convert solid directly into gas (a process called sublimation) at a temperature below its melting point. If we raise the pressure enough, darwinium can exist as a supercritical fluid beyond its boiling point, called its critical point. For daltonium, it is 3889°C and 34.7 MPa.

Atomic Edit

Daltonium contains 125 electrons in 23 orbitals in 8 shells. Even though it is the fifth element of the g-block series, there is just one electron in the g-orbital, because due to relativistic effect, there are three in the f-orbital and one in the p-orbital to account for the g-orbital missing four electron. All the electrons surround the nucleus whose nuclear ratio (proton-neutron ratio) is 1.66 (125 protons, 207 neutrons).

Its atomic radius is 211 picometers (2.11 Å) with van der Waals radius slightly less.

Isotopes Edit

Like every other trans-lead elements, daltonium has no stable isotopes. The most stable isotope is 332Dt with a long half-life (t½) of 25 million years, it alpha decays to 328M. Another isotope of note is 336Dt, whose half-life is 5,208 years, similar to the half-life of carbon-14 (5,728 years), beta decaying to 336Mw. All of the remaining isotopes have half-lives less than a year while majority of these have half-lives less than 5 minutes.

Chemical Edit

Like other g-block elements, daltonium is chemically active and forms many compounds. For example, it would readily combine with air to form an oxide, fizzes with water to form a hydroxide, and neutralize acids because it is a basic metal. Its electronegativity is 1.15, which is low but about typical value for a g-block element, meaning it loses electrons quite easily to form daltonium ions, most commonly Dt7+, telling that this element most commonly displays a +7 oxidation state, meaning it can bond to for example seven halide ions to form ionic salts such as DtCl7, which is a heptavalent compound.

Compounds Edit

Daltonium(IV) oxide (DtO2) is a dark blue solid while daltonium(VII) oxide (Dt2O7) is a grayish black solid. Daltonium(III) sulfide (Dt2S3) is a red solid while daltonium(VII) sulfide (Dt2S7) is a pinkish white solid. The element has a black and white nitrides, the white nitride is DaN while the black nitride is Dt3N7. The examples of halides are DaF5, DaF7, DaCl5, and DaCl7. An example of salt is Dt(NO3)7. Dt(OH)7 is a strong base. Daltonium(VII) hydride (DtH5) is a compound formed when daltonium is heated with water and calcium carbide.

2 Dt + 5 H2O + CaC2 → 2 DtH5 + CaCO3 + CO2

Another hydride is DtH7, which is a colorless gas along with DtH5.

Occurrence and synthesis Edit

It is certain that daltonium is virtually nonexistent on Earth, although in theory this element should exist on Earth as part of the decay chain of maxwellium, which should occur primordially. This element can only be made naturally in tiny amounts by biggest supernovae or colliding neutron stars due to requirement of tremendous amount of energy. Additionally, this element can also be made artificially in much larger quantities by advanced technological civilizations, making artificial daltonium more abundant than natural daltonium in the universe. An estimated abundance of daltonium in the universe by mass is 1.77 × 10−20, which amounts to 5.92 × 1032 kilograms or close to the mass of Hyades star cluster worth of this element.

To go along with other such civilizations, humans on Earth may eventually have the capability to synthesize daltonium. To synthesize most stable isotopes of daltonium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be very difficult since it requires a great deal of energy. Here's couple of example equations in the production of the most stable isotope 332Dt.

187
75
Re + 120
50
Sn + 25 1
0
n → 332
125
Dt
237
93
Np + 74
32
Ge + 21 1
0
n → 332
125
Dt
Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Bc Fl Lz Lv J Mc
8 Nw Gl * Du Bu Ab Sh Hi Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb
9 Ps Hb Kf Bn Ju Hm Bs Rs
* Ls Dm Ms Ts Dt Mw Pk By Bz Fk Dw To Pl Ah My Cv Fy Ch An Ed

Around Wikia's network

Random Wiki