Wikia

PlanetStar Wiki

Bunsenium

Comments0
171pages on
this wiki
Bunsenium (171Bs)
Nomenclature
Pronunciation /'bun•sin•ē•(y)üm/
Name in Saurian Ridjadaim (Rj)
/'ridsh•ā•dām/
Systematic name Unseptunium (Usu)
/'ün•sept•ün•ē•(y)üm/
Location on the periodic table
Period 9
Coordinate 9p5
Above element Jointium (117J)
Below element ––
Previous element Helmholtzium (170Hm)
Next element Ramsium (172Rs)
Family Fluorine family (Halogens)
Series Kirchoffide series
Atomic properties
Atomic mass 502.1715 u, 833.8753 yg
Atomic radius 136 pm, 1.36 Å
Van der Waals radius 206 pm, 2.06 Å
Subatomic particles 669
Nuclear properties
Nucleons 498 (171 p+, 327 n0)
Nuclear ratio 1.91
Nuclear radius 9.47 fm
Half-life 1.4163 ns
Electronic properties
Electron notation 171-9-26
Electron configuration [Gb] 8p3 9s2 9p2
2, 8, 18, 32, 50, 32, 18, 7, 4
Oxidation states −1, +1, +3, +5, +7
(weakly acidic oxide)
Electronegativity 2.41
First ionization energy 987.2 kJ/mol, 10.231 eV
Electron affinity 290.0 kJ/mol, 3.006 eV
Covalent radius 121 pm, 1.21 Å
Physical properties
Bulk properties
Molar mass 502.172 g/mol
Molar volume 31.331 cm3/mol
Density 16.028 g/cm3
Atomic number density 1.92 × 1022 cm−3
Average atomic separation 373 pm, 3.73 Å
Speed of sound 4749 m/s
Magnetic ordering Diamagnetic
Crystal structure Base centered orthorhombic
Color Dark gray
Phase Solid
Thermodynamics
Melting point 579.36 K, 306.21°C
583.19°F, 1042.86°R
Boiling point 755.86 K, 482.71°C
900.89°F, 1360.56°R
Liquid range 176.50 K/°C, 317.70°F/°R
Liquid ratio 1.30
Triple point 579.35 K, 306.20°C
583.15°F, 1042.82°R
@ 91.244 kPa, 6843.9 torr
Critical point 1166.66 K, 893.51°C
1640.32°F, 2099.99°R
@ 26.3621 MPa, 260.175 atm
Heat of fusion 19.037 kJ/mol
Heat of vaporization 60.528 kJ/mol
Heat capacity 0.03775 J/g/K, 0.06795 J/g/°R
18.957 J/mol/K, 34.122 J/mol/°R
Abundance
Universe (by mass) Relative: 1.42 × 10−50
Absolute: 476 kg

Bunsenium is the fabricated name of a hypothetical element with the symbol Bs and atomic number 171. Bunsenium was named in honor of Robert Bunsen (1811–1899), a pioneer in photochemistry, studied the emission spectra of heated substances. This element is known in scientific literature as unseptunium (Usu), dvi-astatine, or simply element 171. Bunsenium is the heaviest halogen and is the fifth member of the kirchoffide series, placing this element at 9p5 coordinate on the periodic table.

Properties Edit

Physical Edit

At ordinary conditions, bunsenium is a dark gray metallic halogen. It is a good conductor of heat but electrical conduction is like a semiconductor. Bunsenium is the densest halogen at 16 g/cm3, twice as dense as iron. The molar volume is 31.3 cm3/mol, similar to astatine, a halogen three rows (two elements) above bunsenium. In ordinary conditions, atoms arrange to form orthorhombic crystals with average atomic separation of 373 pm. It is diamagnetic, meaning it can create its own magnetic field in the presence of externally applied field.

Like other halogens, its liquid range is narrow, between 583°F and 901°F, a bit wider than liquid range of water but with liquid ratio slightly less than water. With increase in temperature, it first becomes a liquid and then a gas. It requires 19 kJ of energy to turn from solid to liquid and it requires 60½ kJ of energy to turn from liquid to gas. It takes 68 mJ of energy to heat one gram of bunsenium by 1°F.

Atomic Edit

Bunsenium's atom is comprised of 669 subatomic particles, including 498 nucleons that make up the nucleus whose ratio is 1.91. This corresponds that there are more than twice as many neutrons as protons. Heavier elements tend to have more neutrons relative to protons because of the increasing nuclear charge due to positively charged protons.

Surrounding the nucleus, there are 171 electrons in nine shells, but it is filling in the eighth shell. One of the orbitals in the eighth shell, 8p, needs one more electron to complete the orbital even though the first electron was added roughly 50 elements ago at lavoisium. However, the 8p orbital was split into 8p1/2 and 8p3/2, which completed that split orbital 44 elements ago at planckium, and 8p3/2, which the first electron was added just two elements ago at joulium.

Isotopes Edit

Like every other elements heavier than lead, bunsenium has no stable isotopes. The most stable isotope is 498Bs with an extremely brief half-life (t½) of 1.4 nanoseconds. It undergoes spontaneous fission, splitting into three lighter nuclei as well as neutrons like the following example.

498
171
Bs → 192
76
Os + 141
59
Pr + 84
36
Kr + 81 1
0
n

Bunsenium has many meta states that are considerably longer lived than any isotopes. One example of 501m1Bs, which is the most stable meta state (t½ = 467 milliseconds). The isomer has a half-life about 3⅓ hundred thousand times longer than the longest ground state isotope, same ratio as the mass of the Sun to the mass of the Earth.

Chemical Edit

Since bunsenium is a halogen, its chemical properties is assumed to be similar to other members. However, relativistic effects would make bunsenium quite unreactive. Like other halogens, it exhibits odd-number oxidation states, from −1 to +7. +3 (trivalent) is the most common state used in compounds as well as most common state found in aqueous solutions. Bunsenium has an electronegativity of 2.41, placing in the middle of the interval between astatine (2.20) and iodine (2.66) in values. The first ionization energy value is also placed in the interval between these two elements, though lot closer to iodine. As a result, bunsenium is more reactive than astatine and jointium but less reactive than iodine and lighter halogens.

Compounds Edit

Bs2O3 is a dark reddish brown crystals, while BsN is a pinkish purple powder. Bs2S3 is a light orange crystals, while BsP is a yellow powder. Bunsenium can bond with other halogens to form interhalogens, such as BsF3, BsCl3, BsBr3, and BsI3. But when bonded with astatine and jointium, it forms interhalogen bunsenides: AtBs and JBs, respectively, since bunsenium is more electronegative than astatine and jointium. Bunsenium can also bond to hydrogen to form hydrogen bunsenide (HBs) and forms hydrobunsenic acid when dissolved in water.

Bunsenium can form organic compounds, called organobunsenium compounds, with properties similar to organic compounds of lighter halogens. For example, bunsenium can form alcohols like dibutylbunsenium oxide (BuC6H18O), as well as sugars like bunsenium carbohydrates.

Occurrence and synthesis Edit

It is almost certain that bunsenium doesn't exist on Earth at all, but it is believed to exist somewhere in the universe, at least in very tiny amounts. Since every element heavier than lithium were produced by stars, then bunsenium must be produced in stars, and then thrown out into space by exploding stars. But it is theoretically impossible for even the most powerful supernovae or most violent neutron star collisions to produce this element through r-process because there's not enough energy available or not enough neutrons, respectively, to produce this heavy element. In the universe, only advanced technological civilizations can produce this element, but barely because it requires so much energy to produce this element, thus it is so unstable. On the 172-element periodic table, bunsenium is the rarest element in the universe at an estimated abundance of 1.42 × 10−50 by mass, which amounts to 476 kilograms or only half a ton or about the mass of a dairy cow.

To go along with other such civilizations, humans on Earth may eventually have the capability to synthesize bunsenium. To synthesize most stable isotopes of bunsenium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be extremely difficult since it requires vast amounts of energy and even if nuclei of this element were produced would immediately decay due to its brief half-life. Here's couple of example equations in the production of the most stable isotope 498Bs.

159
65
Tb + 141
59
Pr + 107
47
Ag + 91 1
0
n → 498
171
Bs
265
103
Lr + 166
68
Er + 67 1
0
n → 498
171
Bs
Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Bc Fl Lz Lv J Mc
8 Nw Gl * Du Bu Ab Sh Hi Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb
9 Ps Hb Kf Bn Ju Hm Bs Rs
* Ls Dm Ms Ts Dt Mw Pk By Bz Fk Dw To Pl Ah My Cv Fy Ch An Ed

Around Wikia's network

Random Wiki