Symbol Bn
Atomic number 168
Pronunciation /'bōrn•ē•(y)üm/
Named after Max Born
Name in Saurian Rehdaim (Rd)
Systematic name Unhexoctium (Uho)
Location on the periodic table
Group 14
Period 8
Family Carbon family (Crystallogens)
Series Kirchoffide series
Coordinate 8p2
Element above Bornium Flerovium
Element left of Bornium Kirchoffium
Element right of Bornium Joulium
Atomic properties
Subatomic particles 658
Atomic mass 494.1047 u, 820.4801 yg
Atomic radius 156 pm, 1.56 Å
Covalent radius 154 pm, 1.54 Å
van der Waals radius 201 pm, 2.01 Å
Nuclear properties
Nucleons 490 (168 p+, 322 no)
Nuclear ratio 1.92
Nuclear radius 9.42 fm
Half-life 9.5418 ms
Decay mode Spontaneous fission
Decay product Various
Electronic properties
Electron notation 168-9-26
Electron configuration [Og] 5g18 6f14 7d10 8s2 8p2 9s2 9p2
Electrons per shell 2, 8, 18, 32, 50, 32, 18, 4, 4
Oxidation states 0, +2, +4, +6
(an amphoteric oxide)
Electronegativity 1.70
First ionization energy 720.5 kJ/mol, 7.467 eV
Electron affinity 187.0 kJ/mol, 1.938 eV
Physical properties
Bulk properties
Molar mass 494.105 g/mol
Molar volume 25.727 cm3/mol
Density 19.206 g/cm3
Atomic number density 1.22 × 1021 g−1
2.34 × 1022 cm−3
Average atomic separation 350 pm, 3.50 Å
Speed of sound 8545 m/s
Magnetic ordering Diamagnetic
Crystal structure Centered tetragonal
Color Gray
Phase Solid
Thermal properties
Melting point 308.02 K, 554.44°R
34.87°C, 94.77°F
Boiling point 500.91 K, 901.63°R
227.76°C, 441.96°F
Liquid range 192.89 K, 347.19°R
Liquid ratio 1.63
Triple point 308.01 K, 554.42°R
34.86°C, 94.75°F
@ 46.311 mPa, 3.4736 × 10−4 torr
Critical point 943.53 K, 1698.36°R
670.38°C, 1238.69°F
@ 9.5152 MPa, 93.908 atm
Heat of fusion 4.191 kJ/mol
Heat of vaporization 38.766 kJ/mol
Heat capacity 0.04731 J/(g•K), 0.08516 J/(g•°R)
23.375 J/(mol•K), 42.076 J/(mol•°R)
Abundance in the universe
By mass Relative: 3.77 × 10−35
Absolute: 1.26 × 1018 kg
By atom 2.00 × 10−36

Bornium is the provisional non-systematic name of a theoretical element with the symbol Bn and atomic number 168. Bornium was named in honor of Max Born (1882–1970), who developed quantum mechanics and made contributions to solid-state physics and optics. This element is known in the scientific literature as unhexoctium (Uho), dvi-lead, or simply element 168. Bornium is the heaviest crystallogen and is the second member of the kirchoffide series, placing this element at 8p2 coordinate on the periodic table.

Atomic properties Edit

Bornium has completed the 9p1/2 suborbital with two electrons right after completing the 9s orbital with two. It filled four consecutive electrons in the outermost shell in two orbitals for the first time since also filling four consecutive in two orbitals from sodium to silicon. In all, the electron notation is 168-9-26.

The nucleus is comprised of 168 protons and 322 neutrons, adding these two nucleons would give the mass number 490. The nucleus makes up 99.98% of the atom, and the atomic mass is 494.1 daltons.

Isotopes Edit

Bornium, like every other element heavier than lead, has no stable isotopes. The longest-lived isotope is 490Bn with a half-life of 9.5 milliseconds. It undergoes spontaneous fission, splitting into three lighter nuclei plus neutrons like the example.

Bn → 208
Pb + 152
Sm + 52
Cr + 78 1

As it is typical of elements in this region of the periodic table of atomic numbers, some meta states are longer-lived than any of the ordinary isotopes. The most stable meta state is 493mBn with a half-life of 5.8 minutes. Other meta states include 494mBn (t½ = 6.7 seconds), 489mBn (t½ = 380 milliseconds), 492mBn (t½ = 143 milliseconds), and 487mBn (t½ = 68 milliseconds).

Chemical properties and compounds Edit

Bornium would behave like lighter cogener flerovium is that it is chemically inactive due to the completion of the 9p1/2 suborbital. So both bornium and flerovium deviate greatly from every lighter crystallogens. +4 returns as common oxidation state, because the outermost shell has four electrons, doubling all other family members, and all can participate in bonding.

Bornium reacts most vigorously with halogens such as fluorine and chlorine, as well as oxygen and sulfur. The fluorides are BnF2, BnF4, and BnF6; the chlorides are BnCl2, BnCl4, and BnCl6; the oxides are BnO, BnO2, and Bn2O3; the sulfides are BnS, BnS2, and Bn2S3. Bornium can form intercrystallogens such as BnC and BnSi, which are gray refractive solids with high melting points of 3305°C (5980°F) and 3472°C (6282°F), respectively.

Bornium can form organic compounds known as organobornium. Examples are tetrafluoromethylbornium (Bn(CF3)4), bornium tetracyclopentadienyl (BnC5H5), tetramethylbornium (Bn(CH3)4), and tetraethylbornium ((C2H5)4Bn).

Physical properties Edit

Bornium is a soft, brittle gray poor metal with density very similar to gold (19.2 vs. 19.3 g/cm3). The sound travels through this element in thin rod at 8545 m/s, five times faster than through gold. The atoms are separated by an average of 3.50 Å. In the solid state, atoms arrange to form centered tetragonal lattices.

Like flerovium, element right above bornium on the periodic table, it has low melting and boiling points due to the closing of 9p1/2 suborbital. Bornium melts at 35°C (95°F), which is the temperature of a hot summer day. Since it is so close to the human body temperature of 37°C (98.6°F), the metal may not melt readily in the hand unlike couple other elements gallium and cesium because the temperature of the hand is most often cooler than the core temperature by about couple degrees. So the melting point of this metal is about the temperature of the one's hand. Its boiling point is 228°C (442°F), low enough for broiler to boil liquid bornium. These corresponds that its liquid range is 193°C (347°F) and its liquid ratio of 1.63. Of the three elements whose melting points is between the room temperature (25°C, 77°F) and human body temperature, bornium has the lowest liquid ratio and narrowest liquid range.

If it wasn't for relativistic effects, bornium would be at the 8p6 coordinate, makng it a noble gas. However, relativistic effects make that coordinate not exist.

Occurrence Edit

It is almost certain that bornium doesn't exist on Earth at all, but it is believe to barely exist somewhere in the universe due to its brief lifetime. Every element heavier than iron can only naturally be produced by exploding stars. But it is likely impossible for even the most powerful supernovae or most violent neutron star collisions to produce this element through r-process because there's not enough energy available or not enough neutrons, respectively, to produce this hyperheavy element. Instead, this element can only be produced by advanced technological civilizations, virtually accounting for all of its abundance in the universe. An estimated abundance of bornium in the universe by mass is 3.77 × 10−35, which amounts to 1.26 × 1018 kilograms or twice the Great Pyramid of Giza worth of bornium in mass.

Synthesis Edit

To synthesize most stable isotopes of bornium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be impossible using current technology since it requires a tremendous amount of energy, thus its cross section would be so low that it is beyond the technological limit. Even if synthesis succeeds, this resulting element would immediately undergo fission. Here's couple of example equations in the synthesis of the most stable isotope, 490Bn.

Pu + 184
W + 62 1
n → 490
Sg + 152
Sm + 62 1
n → 490
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Nw G Ls Dm Ms T Dt Mw Pk By Bz Fn Dw To Pl Ah My Cv Fy Chd A Ed Ab Bu Du Sh Hb Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb Bc Hi Kf Bn J Hm Bs Rs
9 Me Jf Ul Gr Mr Arm Hy Ck Do Ib Eg Af Bhz Me Zm Qtr Bhr Cy Gt Lp Pi Ix El Sv Sk Abr Ea Sp Ws Sl Jo Bl Et Ci Ht Bp Ud It Yh Jp Ha Vi Gk L Ko Ja Ph Gv Dc Bm Jf Km Oc Lb 10 Io Ly