Wikia

PlanetStar Wiki

Bornium

Comments0
171pages on
this wiki
Bornium (Bn, 168)
Nomenclature
Pronunciation /'bōrn•ē•(y)üm/
Name in Saurian Rehdaim (Rd)
/'reh•dām/
Systematic name Unhexoctium (Uho)
/'ün•heks•ok•tē•(y)üm/
Location on the periodic table
Period 9
Coordinate 9p2
Above element Flerovium (114Fl)
Below element ––
Previous element Kirchoffium (167Kf)
Next element Joulium (169Ju)
Family Carbon family (Crystallogens)
Series Kirchoffide series
Atomic properties
Atomic mass 494.1047 u, 820.4801 yg
Atomic radius 156 pm, 1.56 Å
Van der Waals radius 201 pm, 2.01 Å
Subatomic particles 658
Nuclear properties
Nucleons 490 (168 p+, 322 n0)
Nuclear ratio 1.92
Nuclear radius 9.42 fm
Half-life 12.508 ms
Electronic properties
Electron notation 168-9-26
Electron configuration [Gb] 9s2 9p2
2, 8, 18, 32, 50, 32, 18, 4, 4
Oxidation states 0, +2, +4, +6
(amphotetic oxide)
Electronegativity 1.70
First ionization energy 720.5 kJ/mol, 7.467 eV
Electron affinity 187.0 kJ/mol, 1.938 eV
Covalent radius 154 pm, 1.54 Å
Physical properties
Bulk properties
Molar mass 494.105 g/mol
Molar volume 25.727 cm3/mol
Density 19.206 g/cm3
Atomic number density 2.34 × 1022 cm−3
Average atomic separation 350 pm, 3.50 Å
Speed of sound 8545 m/s
Magnetic ordering Diamagnetic
Crystal structure Centered tetragonal
Color Gray
Phase Solid
Thermodynamics
Melting point 308.02 K, 34.87°C
94.77°F, 554.44°R
Boiling point 500.91 K, 227.76°C
441.96°F, 901.63°R
Liquid range 192.89 K/°C, 347.19°F/°R
Liquid ratio 1.63
Triple point 308.01 K, 34.86°C
94.75°F, 554.42°R
@ 46.311 mPa, 3.4736 × 10−4 torr
Critical point 943.53 K, 670.38°C
1238.69°F, 1698.36°R
@ 9.5152 MPa, 93.908 atm
Heat of fusion 4.191 kJ/mol
Heat of vaporization 38.766 kJ/mol
Heat capacity 0.04731 J/g/K, 0.08516 J/g/°R
23.375 J/mol/K, 42.076 J/mol/°R
Abundance
Universe (by mass) Relative: 3.77 × 10−43
Absolute: 1.26 × 1010 kg

Bornium is the fabricated name of a hypothetical element with the symbol Bn and atomic number 168. Bornium was named in honor of Max Born (1882–1970), who developed quantum mechanics and made contributions to solid-state physics and optics. This element is known in scientific literature as unhexoctium (Uho), dvi-lead, or simply element 168. Bornium is the heaviest crystallogen and is the second member of the kirchoffide series, placing this element at 9p2 coordinate on the periodic table.

Properties Edit

Physical Edit

Bornium is a soft, brittle gray poor metal with density very similar to gold (19.2 vs. 19.3 g/cm3). The sound travel through this element in thin rod at 8545 m/s, five times faster than through gold. The atoms are separated by an average of 3.50 Å. In the solid state, atoms arrange to form centered tetragonal lattices.

Like flerovium, element right above bornium on the periodic table, it has low melting and boiling points due to the closing of 9p1/2 suborbital. Bornium melts at 35°C (95°F), which is the temperature of a hot summer day. Since it is so close to the human body temperature of 37°C (98.6°F), the metal may not always melt in the hand unlike couple other elements gallium and cesium because the temperature of the hand is most often cooler than the core temperature by at about couple degrees. So the melting point of this metal is about the temperature of the one's hand. Its boiling point is 228°C (442°F), low enough for broiler to boil liquid bornium. These corresponds that its liquid range is 193°C (347°F) and its liquid ratio of 1.63. Of the three elements whose melting points is between the room temperature (25°C, 77°F) and human body temperature, bornium has the lowest liquid ratio and narrowest liquid range.

Atomic Edit

Bornium has completed the 9p1/2 orbital with two electrons right after completing the 9s orbital with two. It filled four consecutive electrons in the outermost shell in two orbitals for the first time since also filling four consecutive in two orbitals from sodium to silicon. In all, the electron notation is 168-9-26.

The nucleus is comprised of 168 protons and 322 neutrons, adding these two nucleons would give the mass number 490. The nucleus makes up 99.98% of the atom, and the atomic mass is 494.01 daltons.

Isotopes Edit

Bornium, like every other elements heavier than lead, has no stable isotopes. The most stable isotope is 490Bn with a half-life of 12.5 milliseconds. It undergoes spontaneous fission, splitting into three lighter nuclei plus neutrons like the following example.

490
168
Bn → 208
82
Pb + 152
62
Sm + 52
24
Cr + 78 1
0
n

As it is typical of elements in this region of the periodic table of atomic numbers, some meta states are more stable than any isotopes. The most stable meta state is 493mBn with a half-life of 5.8 minutes. Other meta states include 494mBn (t½ = 6.7 seconds), 489mBn (t½ = 380 milliseconds), 492mBn (t½ = 143 milliseconds), and 487mBn (t½ = 68 milliseconds).

Chemical Edit

Bornium would behave like lighter cogener flerovium that it is chemically inactive due to the completion of the 9p1/2 suborbital. So both bornium and flerovium deviate greatly from every lighter elements of the crystallogens. +4 returns as common oxidation state, because the outermost shell has four electrons, doubling all other family members, and all can participate in bonding.

Compounds Edit

Bornium reacts most vigorously with halogens such as fluorine and chlorine, as well as oxygen and sulfur. The fluorides are BnF2, BnF4, and BnF6; the chlorides are BnCl2, BnCl4, and BnCl6; the oxides are BnO, BnO2, and Bn2O3; the sulfides are BnS, BnS2, and Bn2S3. Bornium can form intercrystallogen compounds such as BnC and BnSi, which are gray refractive solids with high melting points of 3305°C (5980°F) and 3472°C (6282°F), respectively.

Bornium can form organic compounds known as organobornium. The examples are tetrafluoromethylbornium (Bn(CF3)4), bornium tetracyclopentadienyl (BnC5H5), tetramethylbornium (Bn(CH3)4), and tetraethylbornium ((C2H5)4Bn).

Occurrence and synthesis Edit

It is almost certain that bornium doesn't exist on Earth at all, but it is believed to exist somewhere in the universe, at least in very tiny amounts. Since every element heavier than lithium were produced by stars, then bornium must be produced in stars, and then thrown out into space by exploding stars. But it is theoretically impossible for even the most powerful supernovae or most violent neutron star collisions to produce this element through r-process because there's not enough energy available or not enough neutrons, respectively, to produce this heavy element. Instead, this element virtually can only be made by advanced technological civilizations. An estimated abundance of bornium in the universe by mass is 3.77 × 10−43, which amounts to 1.26 × 1010 kilograms or twice the Great Pyramid of Giza worth of bornium in mass.

To go along with other such civilizations, humans on Earth may eventually have the capability to synthesize bornium. To synthesize most stable isotopes of bornium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be extremely difficult since it requires vast amounts of energy and even if nuclei of this element were produced would immediately decay due to its brief half-life. Here's couple of example equations in the production of the most stable isotope 490Bn.

244
94
Pu + 184
74
W + 62 1
0
n → 490
168
Bn
276
106
Sg + 152
62
Sm + 62 1
0
n → 490
168
Bn
Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Bc Fl Lz Lv J Mc
8 Nw Gl * Du Bu Ab Sh Hi Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb
9 Ps Hb Kf Bn Ju Hm Bs Rs
* Ls Dm Ms Ts Dt Mw Pk By Bz Fk Dw To Pl Ah My Cv Fy Ch An Ed
Advertisement | Your ad here

Around Wikia's network

Random Wiki