Symbol Ah
Atomic number 134
Pronunciation /'är•hēn•ē•(y)üm/
Named after Svante Arrhenius
Name in Saurian Uhhxodaim (Ux)
Systematic name Untriquadium (Utq)
Location on the periodic table
Period 8
Family Arrhenium family
Series Lavoiside series
Coordinate 5g14
Element left of Arrhenium Paulium
Element right of Arrhenium Meyerium
Atomic properties
Subatomic particles 500
Atomic mass 369.0588 u, 612.8365 yg
Atomic radius 159 pm, 1.59 Å
Covalent radius 177 pm, 1.77 Å
van der Waals radius 184 pm, 1.84 Å
Nuclear properties
Nucleons 366 (134 p+, 232 no)
Nuclear ratio 1.73
Nuclear radius 8.55 fm
Half-life 256.13 d
Decay mode Beta-plus decay
Decay product 366Pl
Electronic properties
Electron notation 134-8-23
Electron configuration [Og] 5g8 6f4 8s2 8p2
Electrons per shell 2, 8, 18, 32, 40, 22, 8, 4
Oxidation states +2, +4, +6
(a mildly basic oxide)
Electronegativity 1.29
First ionization energy 616.3 kJ/mol, 6.388 eV
Electron affinity 102.3 kJ/mol, 1.060 eV
Physical properties
Bulk properties
Molar mass 369.059 g/mol
Molar volume 76.809 cm3/mol
Density 4.805 g/cm3
Atomic number density 1.63 × 1021 g−1
7.84 × 1021 cm−3
Average atomic separation 503 pm, 5.03 Å
Speed of sound 2254 m/s
Magnetic ordering Paramagnetic
Crystal structure Body-centered cubic
Color Grayish white
Phase Solid
Thermal properties
Melting point 976.90 K, 1758.42°R
703.75°C, 1298.75°F
Boiling point 1600.52 K, 2880.94°R
1327.37°C, 2421.27°F
Liquid range 623.62 K, 1122.52°R
Liquid ratio 1.64
Triple point 976.90 K, 1758.42°R
703.75°C, 1298.75°F
@ 2.4676 Pa, 0.018509 torr
Critical point 4103.30 K, 7385.94°R
3830.15°C, 6926.27°F
@ 156.8595 MPa, 1548.088 atm
Heat of fusion 10.016 kJ/mol
Heat of vaporization 154.436 kJ/mol
Heat capacity 0.05949 J/(g•K), 0.10709 J/(g•°R)
21.956 J/(mol•K), 39.521 J/(mol•°R)
Abundance in the universe
By mass Relative: 4.33 × 10−28
Absolute: 1.45 × 1025 kg
By atom 3.08 × 10−29

Arrhenium is the provisional non-systematic name of an undiscovered element with the symbol Ah and atomic number 134. Arrhenium was named in honor of Svante Arrhenius (1859–1927), who founded physical chemistry, including the famed Arrhenius equation and acid-base theory. This element is known in the scientific literature as untriquadium (Utq) or simply element 134. Arrhenium is the fourteenth element of the lavoiside series and located in the periodic table coordinate 5g14.

Atomic properties Edit

Arrhenium contains 366 nucleons (134 protons, 232 neutrons, 1.73 neutrons per proton) that make up the nucleus and 134 electrons in 23 orbitals in 8 energy levels. Due to relativistic effects, the 5g orbital that this element is filling is missing six electrons, instead of 14 electrons in the 5g orbital, there are just 8. Four of six missing 5g electrons are found in the next occupying orbital, 4f, while two make up the complete 8p1/2 split orbital.

Arrhenium atom weighs 369 daltons, three times heavier than iodine and two times heavier than tungsten. The atom sizes 1.29 Å from nucleus to outermost shell, but the real size based on atomic forces is 1.84 Å, roughly 107 of that between nucleus and outermost shell.

Isotopes Edit

Like every other element heavier than lead, arrhenium has no stable isotopes. The longest-lived isotope is 366Ah with a half-life of 256 days, beta decaying to 366Pl. 368Ah has a half-life of 5.3 weeks. All of the remaining isotopes have half-lives less than 5 hours while majority of these have half-lives less than 45 seconds.

As with about 9 out of 10 elements on the periodic table, arrhenium isotopes can form excited state if energy is absorbed. Excited states are metastable because their lifetimes are often extremely short but still last at least a nanosecond. The longest-lived excited state is 371mAh with a very long half-life of 32 days; the second longest has a half-life of just 3 minutes for 369mAh.

Chemical properties and compounds Edit

Arrhenium, like other g-block elements, is reactive, meaning it tarnishes in the air quickly, reacts readily with water to form a base, and gets eaten by acids to form a solution. In the pure oxygen atmosphere under little pressure, it burns with a blue flame. Arrhenium reacts more violently with halogens to form ionic salts. Arrhenium(VI) dominates chemistry over arrhenium(II) and arrhenium(IV). However in aqueous solutions, arrhenium(VI) is rare.

When exposed to air, it forms AhO3 as well as AhN2 and Ah(CO3)3, all are black powder. Arrhenium hexafluoride (AhF6) can be synthesized when uranium hexafluoride give up all six fluorine atoms to arrhenium, since this element has higher electron affinity than uranium. Arrhenium trisulfide (AhS3) can be made when arrhenium reacts with powdered sulfur. During this same action, disulfide and monosulfide can also be produced albeit in smaller proportions than trisulfide. Trisulfide is a brown powder, disulfide is a pink powder, and monosulfide is a pale purple powder.

There are examples of soluble salts of arrhenium: Ah(CO3)2 (red), AhSO4 (blue), Ah(NO3)2 (yellow), and AhSiO4 (green). It can also form organic compounds of arrhenium, called organoarrhenium compounds, such as arrhenium sugars like C12H20O11Ah.

Physical properties Edit

Like most metals, arrhenium is a shiny, silvery metal, but brittle, meaning the force can crumble it. It has a density of 4.8 g/cm3 and its speed of sound is 2254 m/s. The average separation between atoms is 5.03 Å and forms body-centered cubic crystal structure.

Its liquification point is 1758°R, close to the minimum temperature of a charcoal fire. Arrhenium remains a liquid up to its vaporization point of 2881°R. The ratio between these two temperature values yields a liquid ratio of 1.64 and difference between it yields a liquid range of 1123°R.

Occurrence Edit

It is certain that arrhenium is virtually nonexistent on Earth, and is believe to barely exist somewhere in the universe. Every element heavier than iron can only naturally be produced by exploding stars. But it is virtually impossible for even the most powerful supernovae or most violent neutron star collisions to produce this element through r-process because there's not enough energy available or not enough neutrons, respectively, to produce this hyperheavy element. . Instead, this element can only be produced by advanced technological civilizations, virtually accounting for all of its abundance in the universe. An estimated abundance of arrhenium in the universe by mass is 4.33 × 10−28, which amounts to 1.45 × 1025 kilograms or about one quarter Earth masses worth of arrhenium.

Synthesis Edit

To synthesize most stable isotopes of arrhenium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be impossible using current technology since it requires a tremendous amount of energy, thus its cross section would be so low that it is beyond the technological limit. Here's couple of example equations in the synthesis of the most stable isotope, 366Ah.

Tl + 127
I + 34 1
n → 366
Es + 80
Br + 34 1
n → 366
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Nw G Ls Dm Ms T Dt Mw Pk By Bz Fn Dw To Pl Ah My Cv Fy Chd A Ed Ab Bu Du Sh Hb Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb Bc Hi Kf Bn J Hm Bs Rs
9 Me Jf Ul Gr Mr Arm Hy Ck Do Ib Eg Af Bhz Me Zm Qtr Bhr Cy Gt Lp Pi Ix El Sv Sk Abr Ea Sp Ws Sl Jo Bl Et Ci Ht Bp Ud It Yh Jp Ha Vi Gk L Ko Ja Ph Gv Dc Bm Jf Km Oc Lb
10 Io Ly